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Abstract
The path integral formalism is applied to derive the full partition function of
a generalized Su–Schrieffer–Heeger Hamiltonian describing particle motion
in a bath of oscillators. The electronic correlations are computed versus
temperature for some choices of oscillator energies. We study the perturbing
effect of a time-averaged particle path on the phonon subsystem, deriving the
relevant temperature-dependent cumulant corrections to the harmonic partition
function and free energy. The method has been applied to compute the total
heat capacity up to room temperature: a low temperature upturn in the heat
capacity over temperature ratio points to a glassy-like behaviour ascribable to
a time-dependent electronic hopping with variable range in the linear chain.

1. Introduction

Determining the polaron properties is a relevant problem in many-body theory [1, 2]. The
electron motion through a crystal is generally accompanied by a lattice deformation whose size
and shape depend both on the strength of the electron–phonon coupling and on the value of the
adiabaticity parameter peculiar to the system [3–18]. In general, the lattice deformation does
not instantaneously follow the electron that is dragging it, and the retardation effect becomes
a key ingredient of this many-body problem. The Holstein [19] and the Su–Schrieffer–Heeger
(SSH) [20] Hamiltonian models are fundamental tools in polaron physics. While the former has
been mainly used to describe electron coupling to local optical phonons, both acoustic [21] and
optical branches are present in the dimerized lattice of the latter. However, acoustic phonons
in the SSH model are essentially not affected by the e–ph coupling whereas optical phonons
are strongly softened due to single-electron polarization [22].

In this paper we address the general problem of the interplay between an electron and the
optical phonon subsystem (a set of independent oscillators providing the bath for the particle)
in a generalized SSH model, studying (i) the temperature-dependent electronic correlations
induced by the dissipative phonon bath and (ii) the thermodynamical behaviour of the latter in
the presence of a perturbating particle motion. The path integral method [23], being valid for
any value of the e–ph coupling, seems particularly suitable to our task. Moreover, it naturally
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introduces the time (as an inverse temperature) into the formalism, thus allowing us to derive
the thermal particle correlation functions and the cumulant expansion for the phonon free
energy. In section 2, we present the model and discuss the particle correlations in the oscillator
bath. The phonon free energy is calculated in section 3 while in section 4 we apply the model to
compute the total heat capacity of the system both in weak and strong e–ph coupling regimes.
Some conclusions are drawn in section 5.

2. The model

The 1D SSH interacting Hamiltonian is

H =
∑

r

Jr,r+1( f †
r fr+1 + f †

r+1 fr )

Jr,r+1 = − 1
2 [J + α(ur − ur+1)]

(1)

where J is the hopping integral for an undistorted chain, α is the electron–phonon coupling, ur

is the dimerization coordinate relative to the displacement of the atomic group on the r lattice
site along the molecular axis, while f †

r and fr create and destroy electrons on the r group. The
free Hamiltonian is given by a set of classical independent oscillators. By introducing x(τ )

and y(τ ′) as the electron coordinates at the r and r + 1 lattice sites, respectively, and mapping
ur → u(τ ) and ur+1 → u(τ ′) we transform the real space Hamiltonian of equation (1) into
the time-dependent Hamiltonian:

H (τ, τ ′) = Jτ,τ ′( f †(x(τ )) f (y(τ ′)) + f †(y(τ ′)) f (x(τ )))

Jτ,τ ′ = − 1
2 [J + α(u(τ ) − u(τ ′))].

(2)

The SSH Hamiltonian has a two-fold degenerate ground state which undergoes a Peierls
instability. In real space the soliton connects the two degenerate phases with different senses
of dimerizations and a localized electronic state is associated with each soliton. Both electron
hopping to band states (thermal excitation) and electron hopping between solitons are allowed.

Mapping the Hamiltonian onto the timescale we set up the finite T formalism in which
thermally activated electron hops become time-dependent and the retarded nature of the
interactions is accounted for. H (τ, τ ′) is more general than the real space SSH Hamiltonian
since hopping processes are not constrained to first neighbour sites along the chain. A variable
range hopping introduces some local disorder in the system [24]. Therefore the present
approach may apply to polymers in which hopping conduction mechanisms prevail. We
point out that, in real systems, the Peierls gap can be smeared by temperature- or doping-
induced disordering effects [25]. Equation (2) displays the semiclassical nature of the model
as quantum mechanical degrees of freedom interact with the classical variables u(τ ). Setting
τ ′ = 0, u(0) ≡ y(0) ≡ 0, averaging the electron operators over the ground state and pinning
the chemical potential to the zero-energy level, we write the average energy per lattice site:

〈H (τ )〉
N

= V (x(τ )) + u(τ ) j (τ )

V (x(τ )) = −J
a

π

∫ π/a

0
dk cos[kx(τ )] cosh(εkτ/h̄)nF(εk)

j (τ ) = −α
a

π

∫ π/a

0
dk cos[kx(τ )] cosh(εkτ/h̄)nF(εk)

(3)

where N = L/a, with L the chain length and a the lattice constant. nF is the Fermi function and
εk = −J cos(k) is the electron dispersion relation. V (x(τ )) is an effective term accounting for
the τ -dependent electronic hopping while j (τ ) is the external source current for the oscillator
path u(τ ). Averaging the electrons over the ground state we neglect the fermion–fermion
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correlations [26] which lead to effective polaron–polaron interactions in non-perturbative
analysis of the model. This approximation, however, is not expected to affect substantially
our thermodynamical calculations. Being that the energy in equation (2) is linear in the
displacements we can write the general path integral [27] at any temperature as

〈x(β)|x(0)〉 =
∏

i

∫
Dui (τ )

∫
Dx(τ ) exp

[
−1

h̄

∫ h̄β

0
dτ

∑
i

Mi

2
(u̇i

2(τ ) + ω2
i u2

i (τ ))

]

× exp

[
−1

h̄

∫ h̄β

0
dτ

(
m

2
ẋ2(τ ) + V (x(τ )) −

∑
i

ui (τ ) j (τ )

)]
(4)

where we have taken a large number of oscillators (ui(τ ), i = 1 . . . N̄ ), as the bath for the
quantum mechanical particle whose coordinate is x(τ ). β is the inverse temperature, m is
the electron mass and ωi are the oscillator frequencies. The oscillator masses are considered
as independent of i , Mi ≡ M , and hereafter we set M = 104 m. After integrating out the
oscillator coordinates over the paths Dui (τ ), imposing a closure condition (x(β) = x(0)) on
the particle paths and replacing τ → τ/h̄, we obtain the full partition function in the functional
form

Z( j (τ )) = Zph

∮
Dx(τ ) exp

[
−m

2
ẋ2(τ ) − V (x(τ )) − A( j (τ ))

]

Zph =
N̄∏

i=1

1

2 sinh(h̄ωiβ/2)

A( j (τ )) = − h̄2

4M

N̄∑
i=1

1

h̄ωi sinh(h̄ωiβ/2)

×
∫ β

0
dτ1 j (τ1)

∫ β

0
dτ2 cosh(ωi (|τ1 − τ2| − β/2)) j (τ2).

(5)

The thermodynamics of the interacting system can be derived from equation (5) as a
function of J , α and the oscillator bath. An application is shown in section 4 where the total
heat capacity is computed versus temperature. In terms of the generating functional Z( j (τ ))

the two-particle correlation function is defined as

G(2)(τ1, τ2) = h̄2

[
Z−1( j)

δ2

δ j (τ1)δ j (τ2)
Z( j)

]
j=0

. (6)

Then, using equations (5) and the fact that the source action A( j (τ )) is quadratic in the
current, we can study the effect of the phonon bath on the electronic time correlations at any
temperature. Setting τ2 = 0, we plot in figure 1 the square root of G(2)(τ ) ≡ 〈x(τ )x(0)〉
(τ ∈ [0, β]) for three choices of oscillator bath:

(i) a low phonon spectrum made of ten oscillators h̄ω1 = 2 meV . . . h̄ω10 = 20 meV (spaced
by 2 meV),

(ii) an intermediate phonon spectrum with h̄ω1 = 22 meV . . . h̄ω10 = 40 meV, and
(iii) a high phonon spectrum with h̄ω1 = 42 meV . . . h̄ω10 = 60 meV.

N̄ and oscillator energies are purely arbitrary. The periodic condition G(2)(τ ) = G(2)(β − τ )

holds as a general property of the particle–particle correlation function which, up to a prefactor,
coincides with the sum of the oscillator Green functions and therefore it does not depend on the
width of the electron band. At low temperatures (figure 1(a)), small oscillator energies favour
larger electronic correlations which, however, get to the maximum value of 0.26 Å at τ → 0.
Increasing the temperature at T = 100 K (figure 1(b)) leads to a substantial enhancement
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Figure 1. Square root of the two-point correlation functions in units of Å. A bath of ten phonon
oscillators is considered, the largest phonon energy being h̄ω10 = 40 meV (intermediate phonon
spectrum) and h̄ω10 = 60 meV (high phonon spectrum). (a) T = 1 K, (b) T = 100 K,
(c) T = 300 K.

of
√

G(2)(τ ) which becomes of the order of 1 Å in the case of a low energy phonon bath.
At room temperature (figure 1(c)) and for the same bath the electrons are correlated over a
distance of about 2 Å in the whole τ range. Larger phonon spectra tend to lock the electrons,
thus reducing the particle mobility over the timescale and decreasing the space electronic
correlations. Since the upper limit in the τ range of figures 1(a)–(c) is necessarily T -dependent
we plot in figure 2, for an intermediate phonon bath,

√
G(2)(τ ) versus a common τ axis to

emphasize the temperature effect on the particle correlations. Only the room temperature
correlation function retains periodicity over the selected τ range.

While we focus in the following on the equilibrium thermodynamics of the particle–
phonon interacting system, it should be noted that generalization of equation (4) through the
closed-time path formalism [28] would permit us to derive dissipative properties due to the
phonon bath friction from the two-point correlation function. A density matrix study for the
similar problem of a particle in a photon bath (in three dimensions) has been carried out by
Haba and Kleinert [29].
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Figure 2. Square root of the two-point correlation functions in units of Å, plotted, at different
temperatures, in the range τ < 0.04 meV−1. An intermediate phonon spectrum is considered, the
largest oscillator energy being h̄ω10 = 40 meV.

3. Phonon free energy

Next we analyse the effect of the particle motion on the phonon subsystem. The set of N̄
independent oscillators is perturbed by the particle path x(τ ) which couples to each oscillator
through the strength α (assumed independent of i ) of the SSH Hamiltonian. Then, the partition
function of the disturbed oscillator system can be expanded in perturbation series as

Zph[x(τ )] � (1 − 〈C〉 + 〈C2〉 − 〈C3〉 + · · ·)Zph

〈Ck〉 = Z−1
ph

∏
i

∮
Dui (τ )

αk

k!

∫ β

0
dτ1 ui(τ1)x(τ1) · · ·

∫ β

0
dτk ui(τk)x(τk)

× exp

[
−

∫ β

0
dτ

∑
i

Mi

2
(u̇i

2(τ ) + ω2
i u2

i (τ ))

]
.

(7)

In general, the total phonon partition function in the presence of an ensemble of particle
paths [x(τ )] would be given by: Z T

ph = ∮
Dx(τ )Zph[x(τ )]. Here we take a single particle

path, approximating it by the averaged (dimensionless) value 〈x(τ )〉 ≡ 1
β

∫ β

0 dτ x(τ ) = x0.
Then, the odd k terms in the series expansion vanish. Since the oscillators are decoupled
(and anharmonic effects mediated by the particle path are here neglected) we can study the
behaviour of the cumulant terms 〈Ck〉 by selecting a single oscillator having energy ω and
displacement u(τ ). Hence, after expanding the oscillator path in NF Fourier components

u(τ ) = u0 +
NF∑

n=1

2(Re un cos(ωnτ ) − Im un sin(ωnτ )) (8)

with ωn = 2nπ/β and taking the measure of integration∮
Du(τ ) ≡

(
1

2

)2NF (2π · · · 2NFπ)2

√
2λ

(2NF +1)
M

∫ ∞

−∞
du0

NF∏
n=1

∫ ∞

−∞
d Re un

∫ ∞

−∞
d Im un (9)

with λM =
√

π h̄2β/M , we obtain for the kth cumulant the following expression:

〈Ck〉NF = Z−1
ph

(αx0)
k

k!

(βλM )k(k − 1)!!

π k/2(ωβ)k+1

(2π)2

(2π)2 + (ωβ)2
· · · (2NFπ)2

(2NFπ)2 + (ωβ)2
. (10)
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Figure 3. (a) Neperian logarithms of the first three cumulants in equation (10). (b) Phonon free
energy and anharmonic corrections due to the first three cumulants. The e–ph coupling α is in units
of eV Å−1. ω is the phonon energy.

Since the cumulants should not depend on the number of Fourier components in the particle
path expansion, equation (10) provides a criterion to set the minimum NF (at any temperature
and for any oscillator) through the condition 2NFπ 
 ωβ. The thermodynamic properties of
the perturbed oscillator can be computed, observing that the cumulant corrections to the free
energy are given by

Fcum = − 1

β
ln[1 + 〈C2〉 + 〈C4〉 + 〈C6〉 + · · ·]. (11)

In figure 3(a), the three lowest order cumulants are plotted for a weak e–ph coupling and
a high frequency oscillator. At very low temperatures, the cumulants attain the largest values
which are substantially independent of the kth order. By increasing T all cumulants decrease,
〈C2〉 yields the dominant contribution and the perturbation expansion converges rapidly. As
shown in figure 3(b), the free energy corrections are not relevant due to the weak α coupling.
Note that F (k)

cum includes Fph plus the perturbation given by equation (11) to the kth order. The
k = 4 correction is not appreciable with respect to F (2)

cum.
In figure 4 we take a sizeable e–ph coupling (whose order of magnitude applies to a polymer

as polyacetylene), a factor of ten larger than in figure 3: at low T , high order cumulants have
to be included in the series expansion but the temperature range (in which their contribution
is relevant) shrinks by increasing k. An high number of Fourier components is required in
order to get numerical convergence (i.e. NF ∼ 18 000 at T = 1 K), signalling that the particle
dynamics strongly interferes with the oscillator at low T . For any α and any T , one determines
the kth order which makes the cumulant series convergent. For instance, being at T ∼ 150 K:
〈C8〉 ≺ 〈C6〉 ∼ 〈C4〉, the series can be truncated for k = 6 at T > 150 K. Instead, at
T ∼ 90 K, 〈C10〉 ≺ 〈C8〉  〈C6〉 so that the k = 8 term suffices in the series expansion
at larger temperatures. Note, however, that high order cumulant terms should be handled
with care in the computation of physical quantities since they may provide some significant
contributions to the free energy, mainly at increasing temperatures. As is shown in figure 4(b),
the largest correction to the free energy is due to the k = 2 term which strongly reduces the
harmonic value in the whole temperature range whereas the k = 4 and 6 contributions are



Particle path correlations in a phonon bath 6245

Figure 4. As in figure 3 but with a large e–ph coupling α.

also relevant, although of decreasing importance. The k = 8 correction, still appreciable in
the range 50 K � T � 200 K, tends to vanish above room temperature. By enhancing the
temperature, cumulants and free energy become numerically stable, taking a smaller NF: at
T = 300 K, NF ∼ 60.

4. Heat capacity

By mapping the electronic hopping motion onto the timescale, we have introduced a continuum
version of the interacting SSH Hamiltonian. Unlike previous [24] approaches, however, our
path integral method is not constrained to the weak e–ph coupling regime and it can be applied
to any range of physical parameters. To compute equations (5) one has to select the class of
particle paths which mainly contribute to the partition function and fix the physical quantities
characterizing the system: the bare hopping integral J , the oscillator frequencies ωi and the
effective coupling χ = α2h̄2/M (in units of meV3).

We take here a narrow band system (J = 100 meV) to be consistent with previous
investigations [30] and with the caveat that electron–electron correlations may become relevant
in narrow bands. The total heat capacity has been first (figure 5) computed up to room
temperature, assuming the low phonon spectrum of figure 1. The lowest energy oscillator
yields the largest contribution to the phonon partition function mainly in the low temperature
regime while the ω10 oscillator essentially sets the phonon energy scale which determines the
size of the e–ph coupling. A larger number N̄ of oscillators in the previously given range
would not significantly modify the calculation.

In the discrete SSH model, the value ᾱ ≡ 4α2/(πκ J ) ∼ 1 marks the crossover between
weak and strong e–ph coupling, with κ being the effective spring constant. In the continuum and
semiclassical models of equation (5) the effective coupling is the above-defined χ . Although,
in principle, discrete and continuum models may feature non-coincident crossover parameters,
we assume that the relation between α and J obtained by the discrete model crossover condition
still holds in our model. Hence, at the crossover we get: χc ∼ π J h̄2ω2

10/64. This means that,
in figure 5, the crossover is set at χc ∼ 2000 meV3. The total heat capacity over temperature
ratio shows a peculiar low temperature upturn (also in the weak χ regime) which can be mainly
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Figure 5. Total heat capacity over temperature for three values of the effective coupling χ (in
units of meV3). A bath of ten phonon oscillators is considered, the largest phonon energy being
h̄ω10 = 20 meV. The phonon heat capacity is also plotted.

Figure 6. Total heat capacity over temperature for five values of the effective coupling χ (in units
of meV3). The largest oscillator energy of the phonon bath is h̄ω10 = 40 meV.

ascribed to the sizeable effective hopping integral term V (x(τ )). The e–ph coupling, however,
determines the shape of the low T anomaly. The small phonon contribution to the heat capacity
is also reported on to point out that the Dulong–Petit value is achieved at T � 200 K.

The effect of the oscillators on the heat capacity is pointed out in figure 6 where we take the
intermediate phonon bath with energies h̄ω1 = 22 meV, . . . , h̄ω10 = 40 meV. Accordingly
the crossover is set at χc ∼ 8000 meV3 and three plots out of five lie in the strong e–ph
coupling regime. The heat capacity grows fast versus temperature at strong couplings due
to the source action contribution, whereas the presence of the low T upturn in the total heat
capacity over T ratio is confirmed. Note that, due to the enhanced oscillator energies, the
phonon heat capacity saturates at T ∼ 400 K.

Integrating equation (5), we select, at any temperature, the ensemble of particle paths over
which the hopping potential V (x(τ )) is evaluated. This ensemble is therefore T -dependent.
However, given a single set of path parameters one can monitor the V(x(τ ))behaviour versus T .
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It turns out that the hopping decreases by lowering T but its value remains appreciable also at
low temperatures (�20 K). Since the dτ integration range is larger at lower temperatures, the
overall hopping potential contribution to the total action is relevant also at low T . Precisely,
this property causes the anomalous upturn in the heat capacity linear coefficient. Summing
over a large number of paths is essential to recover the correct thermodynamical behaviour of
the heat capacity in the zero temperature limit.

Further investigation also reveals that the upturn persists both in the extremely narrow
(J ∼ 10 meV) and in the wide band (J ∼ 1 eV) regimes. Our method accounts for a variable
range hopping on the τ scale which corresponds physically to introducing some degree of
disorder along the linear chain. This feature makes our model more general than the standard
SSH Hamiltonian with only real-space nearest-neighbour hops. Although I am not aware of
any other direct computation of specific heat in the SSH model, hopping type mechanisms have
been suggested [31] to explain the striking conducting properties of doped polyacetylene at
low temperatures. Since the specific heat directly probes the density of states and integrating
over T the specific heat over T ratio one can have access to the experimental entropy, the
method here presented may provide a new approach to analyse the transition to a disordered
state which indeed exists in polymers [32]. In this regard it is worth remarking that glassy
systems [33], in fact, exhibit a low T upturn in the specific heat over T ratio due to tunneling
states for groups of atoms providing a non-magnetic internal degree of freedom in the potential
structure [34, 35].

5. Conclusions

We have developed a general path integral method to study the interplay between electron
motion and oscillator bath in a semiclassical SSH model. Using the fact that the time-
dependent average energy is linear in the oscillator displacement, we have analytically deduced
the full partition function as a functional of the e–ph source term and computed the two-
particle correlations induced by the phonon baths at some selected temperatures: at increasing
temperatures the electrons are correlated over larger distances. Then, we have focused on the
perturbing effect of the electron particle motion on the thermodynamics of a single oscillator.
After expanding the time-dependent oscillator path in Fourier series, we have derived the
kth-order cumulant correction (equation (10)) to the oscillator partition function in the case
of a time-averaged electron particle path. At decreasing temperatures an increasing number
(NF) of Fourier components in the oscillator path is required to compute the cumulant terms
with accuracy. NF is also a growing function of the oscillator energy. The proposed method
permits us to evaluate, for a given e–ph coupling, the cumulant corrections to the harmonic
partition function and free energy of each oscillator at any temperature. While higher kth-order
terms become more relevant at low T and they have to be included in the partition function
series expansion, the main corrections to the harmonic free energy are instead ascribable to the
lower kth-order cumulants and their effect is also evident at increasing temperatures. Further
refinements on the presented results may be obtained by integrating the oscillator partition
function over an ensemble of τ -dependent particle paths. Finally, the path integral method has
been applied to compute the heat capacity of the system as a function of the e–ph coupling
and the oscillator energies. We find a peculiar upturn in the low temperature plots of the heat
capacity over temperature ratio, indicating that a glassy-like behaviour can arise in the linear
chain as a consequence of a time-dependent electronic hopping with variable range.
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[17] Ku L C, Trugman S A and Bonča J 2002 Phys. Rev. B 65 174306
[18] Mischchenko A S, Nagaosa N, Prokof’ev N V, Sakamoto A and Svistunov B V 2002 Phys. Rev. B 66 020301(R)
[19] Holstein T 1959 Ann. Phys., NY 8 325
[20] Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698

Heeger A J, Kivelson S, Schrieffer J R and Su W P 1988 Rev. Mod. Phys. 60 781
[21] Miyasaka N and Ono Y 2001 J. Phys. Soc. Japan 70 2968
[22] Nakahara M and Maki K 1982 Phys. Rev. B 25 7789
[23] Feynman R P 1955 Phys. Rev. 97 660
[24] Lu Y 1988 Solitons and Polarons in Conducting Polymers (Singapore: World Scientific)
[25] Rice M J and Mele E J 1981 Chem. Scr. 17 121
[26] Hirsch J E 1983 Phys. Rev. Lett. 51 296
[27] Kleinert H 1995 Path Integrals in Quantum Mechanics, Statistics and Polymer Physics (Singapore: World

Scientific)
[28] Schwinger J 1961 J. Math. Phys. 2 407
[29] Haba Z and Kleinert H 2001 Eur. Phys. J. B 21 553
[30] Zoli M 2002 Phys. Rev. B 66 012303
[31] Kivelson S 1981 Phys. Rev. Lett. 46 1344
[32] Nieuwenhuizen Th M 1997 Preprint cond-mat/9701044
[33] Zeller R C and Pohl R O 1971 Phys. Rev. B 4 2029
[34] Zoli M 1991 Phys. Rev. B 44 7163
[35] Zoli M 2001 Phys. Rev. B 63 174301


